Induced E.M.F.

Induced EMF

- Faraday showed that moving a wire in a magnetic field induces a current in that wire.
- As work is done in moving the charge from one end to the other, an electric potential exists: induced emf (voltage)

- The induced emf (and current) only occurs when the displacement is at right angles to the magnetic field.
- The induced emf (and current) immediately stops when the velocity is zero.

- The strength of the emf produced depends on:
 - The speed of the movement
 - The strength of the magnetic flux density
 - Number of turns in the coil (number of wires)
 - The area of the coil

Magnetic Flux

 The number of magnetic field lines passing through an area.

- Faraday realized that the magnitude of the induced emf was not proportional to the rate of change of the magnetic field
- The magnitude of the induced emf is related to the rate of change of magnetic flux (or flux linkage for more than one wire)

Consider a wire of length *I*, moving with velocity *v*, perpendicular to a magnetic field *B*.

Since charges are moving in a magnetic field, there is a force.

$$F_B = qvB\sin\theta$$
 $\theta = 90^\circ$

In our case force (on positive charges) is up.

This generates an electric field, and thus a force.

$$F_E = qE$$

At some point these two forces will be equal and the charges stop moving.

$$F_E = F_B$$

$$qE = qvB$$
 but
$$E = \frac{\Delta V}{\Delta x} \quad \text{so} \quad \frac{\Delta V}{\Delta x} = vB$$
 or
$$\boxed{\varepsilon = Bvl}$$

Faraday related the emf to magnetic flux, which is an area.

$$\Phi = BA\cos\theta \qquad \text{Units: weber, Wb}$$
 Magnetic Magnetic flux field

Magnetic flux is a measure of the number of lines of magnetic force passing through an area.

In time Δt , the wire moves a distance Δx

Therefore, it covers an area of $I\Delta x$

so... in
$$\Delta t$$
 $\varepsilon = \frac{Bl\Delta x}{\Delta t} = \frac{BA}{\Delta t}$
$$\therefore \quad \varepsilon \propto \frac{\Delta \Phi}{\Delta t}$$

if we have more than 1 wire (a coil), we have

$$\varepsilon \propto N \frac{\Delta \Phi}{\Delta t}$$

where *N* is the number of wires (in the coil)

Faraday's Law

 The magnitude of the induced emf in a circuit is directly proportional to the rate of change of magnetic flux or flux-linkage.

Heinrich Lenz

 In 1834, Russian physicist Lenz applied the Law of Conservation of Energy to determine the direction of the induced emf for all types of conductors.

Lenz's Law

- The direction of the induced emf is such that the current it causes to flow opposes the change producing it.
- In other words, the resulting emf is in the opposite direction of the motion.

 Combining Faraday's law and Lenz's law then gives us equation for induced emf.

$$\varepsilon = -\frac{\Delta\Phi}{\Delta t}$$

$$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$$

Example 1

 The magnetic flux through a coil of wire containing 5 loops, changes from -25 Wb to 15 Wb in 0.12 s. What is the induced emf in the coil?

$$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$$

= -(5) $\frac{(15 Wb - -25 Wb)}{0.12 s}$ = -1700 V

Example 2

• The wing of a jumbo jet is 9.8 m long. It is flying at 840 kmh⁻¹. If it is flying in a region where the earth's magnetic field has a vertical component of 7.2x10⁻⁴ T, what potential difference could be produced across the wing?

$$v = 840 \text{ kmh}^{-1} = 233.3 \text{ ms}^{-1}$$

$$\varepsilon = Bvl = (7.2 \times 10^{-4} \ T)(9.8 \ m)(233.3 \ ms^{-1}) = 1.6 \ V$$